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Understanding attributes of crop varieties and food raw materials underlying desirable characteristics
is a significant challenge. Metabolomics technology based on flow infusion electrospray ionization
mass spectrometry (FIE-MS) has been used to investigate the chemical composition of potato cultivars
associated with quality traits in harvested tubers. Through the combination of metabolite fingerprinting
with random forest data modeling, a subset of metabolome signals explanatory of compositional
differences between individual genotypes were ranked for importance. Interpretative analysis of
highlighted signals based on ranking behavior, intensity correlations, and mathematical relationships
of ion masses correctly predicted metabolites associated with flavor and pigmentation traits in potato
tubers. GC-MS profiling was used to further validate proposed compositional differences. The potential
for the development of a database strategy for large scale, long-term projects requiring comparison
of chemical composition in plant breeding, mutant population analysis in functional genomics
experiments, or food raw material analysis is described.
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INTRODUCTION

Despite wide interest in human nutrition we are relatively
ignorant of the detailed composition of the food we consume.
Total chemical content is a major determinant of many crop
plant variety quality characteristics, and food raw materials
typically contain many hundreds of different metabolites present
at a wide concentration range (1-3). Thus, not only biotech-
nology companies and plant breeders with an interest in crop
improvement but also food producers and distributors, as well
as government advisory agencies, increasingly desire objective
and meaningful information relating to the “global” chemical
composition of food raw materials.

Metabolomics technology (1-4) has been proposed for the
investigation of crop plant attributes underlying desirable
characteristics (5-11); however, the dimensionality and intrinsic
variance of metabolomics data make representation and mean-
ingful comparison challenging (12-16). Metabolite “finger-
printing” approaches (1-4) provide a rapid, comprehensive, and
nonbiased assessment of the metabolome (6-11), and flow
infusion electrospray ionization mass spectrometry (FIE-MS)
has proved to be valuable for the analysis of plant breeding
populations and harvested food raw materials (6, 8-11). Mass
spectrometry fingerprints are directly interpretable through
linkage between specific ion signals (mass to charge ratio:m/z)

to candidate metabolite derivatives sharing the same atomic mass
(5, 6, 8-11). The high dimensionality of FIE-MS fingerprints
(often>1000m/zsignals) and intrinsic variability in metabolite
concentrations demand powerful multivariate methods for
meaningful data analyses (12-21). A range of different statisti-
cal and machine-learning techniques give high predictive
accuracy (8-16,19-23). However, this is often at the expense
of either providing multiple solutions (12, 24) or generating
complex models that can be opaque to further interpretability
(12-15) and impossible to compare. In the present study, we
aimed to approach both the representational and interpretability
problems by rankingm/zsignals according to statistical measures
related to the behavior of each individual variable in the full
data set. The importance score (17,18) derived from the analysis
of an ensemble of decision trees (19, 21, 22) produced by the
random forest (RF) (17, 18) tree classification algorithm can
provide such information (6). Importantly, this is achieved
without requiring an initial reduction of dimensionality so that
each variable has an equal chance of being included in the final
model, thus allowing direct comparison of all classifiers (6).

The present study focused on an analysis of compositional
differences in potato cultivars where there was no prior genetic,
biochemical, or analytical chemistry data available with which
to guide the interpretation of the metabolome data models. A
primary objective was to validate a strategy to identify a subset
of variables (m/zsignals) that adequately describe significant
metabolome differences between several genotypes grown under
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field conditions. Further interpretation of the highlightedm/z
signals was explored to link metabolome differences to genotype
traits. Finally, a strategy for standardized comparison of the
global composition of individual crop genotypes or food raw
materials is explored.

MATERIALS AND METHODS

Plant Material. The potato tuber material and procedures for sample
preparation and extraction have been described previously (10). The
present study utilized fiveSolanum tuberosumcultivars: Agria (Ag),
Désirée (De), Granola (Gr), Linda (Li), and Solara (So). Two closely
related populations of Désirée, which were independently propagated
(De1 and De2) (6,10), were included in the sample set.

Sample Preparation and Metabolite Analysis.FIE-MS analysis
of the potato tuber extracts was performed using an LCT mass
spectrometer (Micromass, Manchester, U.K.) as described previously
(10). Data were collected in positive and negative ionization modes.
Raw data of the whole infusion profiles were exported and mass
intensities of each scan electronically binned to 1 amu (between-0.2
and 0.8 amu). The resulting mass spectrum for each analysis was
calculated as the mean of 11 scans around the apex of the infusion
profile. Mass spectra of all analytical runs per tissue and ionization
mode were combined in a single intensity matrix (runs× m/zratios).
GC-MS analysis of potato tuber extracts was performed using an Agilent
5973 N MSD. A volume of 50µL of each extract was dried in vacuo
(SpeedVac) and derivatized in two steps with 100µL of 20 mg/mL
methoxyamine hydrochloride (Fluka Chemicals from Metlab Supplies
Ltd., Sandycroft, U.K.) in dry pyridine (Fluka) at 30°C for 90 min
and subsequently with 100µL of N-methyl-N-(trimethylsilyl)trifluo-
roacetamide (MSTFA) (Macherey-Nagel from Fisher Scientific U.K.,
Loughborough) at 37°C for 30 min. GC-MS conditions for potato tuber
samples were as follows: split injection (25:1, 250°C) of 1 µL on a
30 m × 0.25 mm i.d. and 25µm film DB5-MS column at 1 mL/min
(He) flow rate; 85°C initial oven temperature held for 2 min, then
increased at a rate of 30°C/min to a final temperature of 330°C and
subsequently held at 330°C for 5 min. The transfer line temperature
was set to 300°C, and data were acquired between 80 and 500 amu at
a rate of six spectra/s with a detector voltage of 1400 V. Of the 2304
analyses performed, 48 representative chromatograms were manually
deconvoluted. A final list of 91 peaks was used to locate metabolites
in all CSV-exported runs (Chemstation, Agilent) using a script in Matlab
(V.6.5.1, The Math Works Inc., Matrix House, Cambridge, U.K.). The
final data matrix contained the background-subtracted intensity of a
characteristic mass ion at the apex for each targeted peak. When
possible, peak identity was confirmed by comparison with standards.

Construction of a “Mastermix” Fingerprint Population. One
approach to the compositional analysis of different plant genotypes is
to compare each to a Mastermix class effectively representative of
metabolome variance found in all classes. This technique is known in
the microarray community as “pooling”, where individual samples are
combined either in vitro (25) or in silico (26) to reduce inherent subject-
to-subject variability. In our case, the objective was to form a virtual
new potato class wherein the new comparator encapsulated the overall

metabolic diversity of the potato cultivar population. Our strategy
(Supporting Information) centered on randomly pooling a single FIE-
MS fingerprint from each class where the median intensity, at allm/z
of the selected fingerprints, was used to create a virtual comparator
sample. To restrict the inevitable reduction in variance, a sample was
used only once when the electronic Mastermix was generated.

Data Analysis. GC-MS and FIE-MS raw data were transformed
before data analysis as described previously (6, 10). All computation
and subsequent visualization were carried out in the R environment
(27) using packages available from the R website (randomForestand
ROCR). Original datasets were split into a training set (used for model
construction, feature selection, and visualization) and an independent
test, which was used for assessing model generalizability; thus, 160
samples were used for training and 80 samples for testing in FIE-MS
data, and 654 samples were used for training and 300 samples for testing
in GC-MS data. Sample classification and the selection of potentially
explanatory variables in both FIE-MS and GC-MS data were achieved
as demonstrated previously using the RF tree classification algorithm
(6) (Supporting Information). In the case of FIE-MS data the first stage
in the analysis was to define a ranked list of potentially explanatory
signals by computing a RF importance score for eachm/z in each
classification task. Permutation testing was subsequently used to
determine the statistical significance (p value) of each importance score
(6). Significant signals (p e 0.005) found in at least one of the models
were kept for the “heatmap” visualization. Rows (m/z signals) were
reordered according to the dendrogram built by hierarchical clustering
using the absolute value of the correlation coefficient between signals
as the similarity measure.

FIE-MS Signal Interpretation. A comprehensive list of metabolites
present in the potato metabolome was compiled from an exhaustive
literature and database search as well as by including additional primary
and conserved secondary metabolites extrapolated from The Arabidopsis
Information Resource (TAIR) database (28) (http://www.arabidop-
sis.org/tools/aracyc/). This information was used to generate potato-
specific entries in ArMec, a metabolite signal identification database
developed in Aberystwyth (http://www.armec.org/MetaboliteLibrary/
index.html) to interpret FIE-MS data. Using ArMec, a potato ESI
prediction spreadsheet was created for both positive and negative ESI
modes by calculating masses of potential (de)protonated molecular ions
and their associated isotopes, salt adducts of alkali metals, neutral losses,
and homogeneous dimer and dimer ion pair adducts.

The initial data analysis by RF produced a list ofm/zsignals ranked
by importance scores orp value for each classification task. Using an
importance score of 0.003 as a validated threshold for explanatory power
in FIE-MS data (6), the lists of the top-rankedm/z(generally 25-30)
were used to make metabolite putative assignments by querying the
potato ESI predictions in ArMec and selecting the most likely candidate
metabolites based upon the occurrence or nonoccurrence of a corre-
sponding ion mass signal (as expected from the profiling of the chemical

Table 1. Model Statistics in Pairwise Comparison of Potato Cultivars
by Random Forest

pairwise comparison classification accuracy (%) model margina

Ag_De1 100 0.62
Ag_Gr 97 0.61
Ag_Li 97 0.44
Ag_So 100 0.64
De1_Gr 100 0.66
De1_Li 100 0.42
De1_So 100 0.68
Gr_Li 100 0.59
Gr_So 100 0.74
Li_So 100 0.58

a Margin is a measure of model sensitivity.
Figure 1. Relationship between importance score and random forest
ranking in pairwise comparison of potato cultivars (FIE-MS positive ion
data). Variables (m/z) are shown ranked by random forest importance
score for each pairwise classification of the five cultivars (Ag, Agria; De,
Désirée; Gr, Granola; Li, Linda; So, Solara).
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standards). As several overlapping solutions predicting the presence
of different metabolites were often possible, the most likely combination
of ions putatively identifying a specific metabolite were confirmed by
further examination of signal relationships in a correlation analysis using
justm/zwith an appropriatep value. Further investigation of the highly
explanatory signals was explored by MS/MSn experiments in (i) potato
extracts, (ii) pure authentic standards, and (iii) potato extracts spiked
with an authentic standard on an LTQ LCMS (Thermo Finnigan, San
Jose, CA). When possible, metabolite identification was validated by
GC-MS analysis using authentic standards.

RESULTS AND DISCUSSION

Potato Cultivar Classification by FIE-MS Fingerprinting.
FIE-MS fingerprints were generated in both ionization modes
(6, 10) from tuber extracts of the potato cultivars Agria, Désire´e,
Granola, Linda, and Solara. The merits of analyzing both the
positive ion and negative ion data are twofold. First, it cannot
be predicted which ionization mode data set will be the most
explanatory because changes evident in the metabolome depend

Figure 2. Analysis of potato cultivar FIE-MS (positive mode) fingerprints by random forest ranking and correlation analysis of signals. (A) Variables (m/z)
are shown ranked by P value for each pairwise classification of the five cultivars (Ag, Agria; De, Désirée; Gr, Granola; Li, Linda; So, Solara). A significance
threshold (ST) validated in previous studies (6) is shown. (B) The top 24 m/z ranked by importance score in different models generated by random forest
analysis. The left panel indicates signals selected in a single combined model involving all cultivars, and m/z considered to be related (following correlation
analysis and calculation of mathematical relationships) are color coded. The middle panel shows the m/z ranked by random forest in pairwise comparisons
of potato cultivars; all signals previously selected in the combined model are similarly color coded. The right panel illustrates new sets of potentially
related ions found only in pairwise comparisons. (C) Correlation analysis of signals (positive ion data) using a subset of significant (p e 0.01) variables
selected by a random forest model comparing all five cultivars. A heatmap representation is shown where each variable is color coded according to
significance in the model.
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on the actual matrix under investigation; analyzing (or even
acquiring) in only one ionization mode will ignore all of those
potentially important metabolites that can be ionized only in
opposite polarity. Second, explanatory variables in both data
sets can be linked to the same parent molecule, and thus both
highlight the importance and aid the identification of a named
metabolite. Using random forest, an initial pairwise comparison

of the positive ion FIE-MS fingerprints (6), representing each
cultivar, generated models with high classification accuracy and
high sensitivity (Table 1). These data suggested that surprisingly
large differences in composition exist between tubers of
individual cultivars. Random forest importance scores in all
pairwise comparisons leveled off before variable 30 in the
ranked lists, with anywhere between 9 and 24m/zsignals having

Figure 3. Interpretation of FIE-MS explanatory signals and confirmation by GC-MS profiling. (A) Detail of a correlation analysis indicating the putative
identity of FIE-MS signals (positive and negative ion data) discriminating Désirée from other cultivars. Groups of correlated signals representing putative
metabolites are individually color coded. (B) Relationship between importance score and variable rank in random forest analysis of GC-MS data. (C)
Identity of top 15 explanatory GC-MS peaks selected by random forest analysis data in pairwise comparisons of Désirée with other cultivars. GC-MS
peaks identified in data share the same color coding as FIE-MS signals corresponding to the same metabolites. (D) Box plots of the concentration
(relative ratios) of selected explanatory metabolites in five potato cultivars.
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a value greater than the significance threshold (ST) of 0.003
that we have proposed previously (6) for FIE-MS pairwise
models (Figure 1). Permutation testing (6) revealed that of 1000
signals, only a small number of variables had significant
discriminatory potential (Figure 2A). Analysis of negative ion
data yielded comparable results (data not shown).

Interpretation of Metabolome Differences Detected by
FIE-MS in Potato Cultivars. For each cultivar combination,
the behavior of the top 24 variables selected by RF in both
ionization modes was examined in detail. The list of the top 24
variables for discrimination of all cultivars in positive ion data
(left panel,Figure 2B) included many that were potentially
related (e.g., 104/105 and 296/297 could represent isotopes).
In the pairwise comparisons these putatively linked (color coded)
signals clustered and were even more highly ranked (center
panel, Figure 2B). Each pairwise model contained specific
combinations of such groupings and, importantly, further signals
potentially linked to the same metabolites were additionally
highly ranked, strengthening the possibility that they were
derived from the same metabolite. Furthermore, a range of
potentially related ions not present in the top 24 signals
discriminating all cultivars were also evident in specific subsets
of the pairwise comparisons (right panel,Figure 2B) and in
negative ion data (Supporting Information). A correlation
analysis (6) performed using variables withp values of<0.02
similarly identified clusters of positive ion signals typical of

individual cultivar comparisons (Figure 2C) and also in negative
ion results (Supporting Information). Using the relationship
between Désirée and other cultivars as an example, it is evident
(Figure 3A) that many such groups of signals potentially
represent isotopes, salt adducts, and fragments of known
metabolites (Supporting Information). Some metabolites were
highlighted in both ionization modes (e.g., raffinose and
tyrosine), whereas others were found only in negative or positive
ion data (e.g., aspartate, gluconate, leucine/isoleucine, GABA,
quinate, and chlorogenate). In all instances the relatedm/zwere
found in the top 20-30 variables ranked by RF, suggesting that
an importance score threshold of 0.003 was adequate.

GC-MS Profiling Analysis of Potato Cultivars. The potato
extracts analyzed by FIE-MS fingerprinting were further
subjected to GC-MS metabolite profiling (10), and the resulting
data matrix of peak relative ratios in each sample was used for
RF analysis. Pairwise comparison of the GC-MS cultivar data
generated higher importance scores in comparison to the much
more highly dimensional FIE-MS data, with values leveling off
between ranks 8 and 15 (Figure 3B). All models representing
pairwise comparisons of GC-MS profiles had a high classifica-
tion accuracy (>92%), and variables withp values of>0.001
were only evident below rank 17 in all models. When peak
identity was known, the highlighted GC-MS variables were
matched against the list of explanatory metabolites predicted
by high-throughput FIE-MS analysis shown inFigure 3B. Using

Table 2. Potato Cultivar Quality Traitsa

trait Agria Desiree Granola Linda Solara

after cooking blackening none−trace trace−little trace−little N/D none−trace
taste good−excellent moderate−good moderate−good good good
French fry suitability good−very good moderate−good poor−moderate N/D N/D
frying color pale medium N/D N/D N/D

a Data summarized from European Cultivated Potato Database (http://www.europotato.org/).

Figure 4. Relationships between explanatory metabolites and potato quality traits: (A) Strecker reactions converting tyrosine and isoleucine into flavor
and aroma components during potato cooking; (B) metabolism leading to undesirable discoloration of potato raw materials during storage, processing,
or cooking.
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compositional comparisons with Désirée as an example, it can
be seen that explanatory GC-MS peaks (color coded) corre-
sponding to tyrosine, raffinose, phenylalanine, GABA, glucon-
ate, isoleucine, leucine, methionine, and aspartate were generally
all highly ranked in the same cultivar-specific pattern as in the
FIE-MS data (Figure 3C). Furthermore, the presence of
correlated signals in FIE-MS data representing unidentified
metabolites (Figure 3A) reflected the presence of a similar
proportion of unknown peaks in GC-MS analysis shown in
Figure 3C.

Relationship between Metabolite Content and Potato
Cultivar Characteristics. A good correspondence was evident
between high RF ranking and the relative concentrations of the
selected metabolites in individual cultivars (Figure 3D). For
example, tyrosine was present at a considerably higher con-
centration in a Désirée background than in either Solara or Agria
and was the most highly ranked metabolite signal for discrimi-
nation between these cultivars. Many of the identified metabo-
lites that contributed significantly to compositional differences
between the potato cultivars are linked closely to quality traits
in potato tubers (Table 2). Isoleucine, leucine, tyrosine, and
phenylalanine are all known to be important precursors of flavor
and aroma compounds in cooked potatoes (29,30). For example,
isoleucine/leucine and tyrosine are major substrates for Strecker
reactions (Figure 4A) that produce volatile aldehydes (meth-
ylbutanals and benzaldehyde, respectively), which contribute

“almond” and “toasted/sweet” aromas to boiled potatoes. Free
tyrosine is also a major substrate for polyphenol oxidases (31),
which are responsible for undesirable melanin biosynthesis in
mechanically damaged potatoes (Figure 4B). Tyrosine is
relatively low in cultivars such as Solara and Agria, which are
suitable for slicing and frying (Table 2), and high in Désire´e
and Granola, which are unsuitable (Figure 3D). Similarly,
chlorogenic acid (and by implication its precursors phenylala-
nine, quinate, and caffeate) is linked to nonenzymatic reactions
associated with postcooking blackening (32) and is also a
substrate for polyphenol oxidases in cultivars such as Granola
and Désire´e (Figure 4B).

“Mastermix” Strategy for Comparison of Potato Tuber
Composition. To provide a more useful framework for com-
positional comparisons between larger numbers of plant geno-
types and to provide possibilities for data integration between
laboratories, a single metabolome representation will be required
as a comparator. In pilot experiments an electronic Mastermix
population of FIE-MS fingerprints was generated (Supporting
Information). Importance score ranking by RF revealed that 10-
20 m/z signals were highly significant to discriminate each
cultivar from the Mastermix population (Figure 5A). To confirm
the robustness of this approach 100 Mastermix populations were
generated by random pooling of fingerprints and the pairwise
comparison of each cultivar performed using RF. In all instances
the explanatory signals identified and their rank order showed

Figure 5. Use of a Mastermix reference population to generate a unique cultivar representation based on explanatory variables ranked by random forest:
(A) relationship between importance score and variable rank in a random forest analysis of FIE-MS data involving the pairwise comparison of each
cultivar with a Mastermix fingerprint population; (B) signal ranking correspondence in random forest pairwise comparisons of cultivar FIE-MS fingerprints
with 100 different randomly generated Mastermix populations; (C) top 30 ranked explanatory variables identified in a random forest model comparing
FIE-MS fingerprints of all five potato cultivars; (D) top 10 ranked explanatory m/z identified in the random forest pairwise comparison of cultivar FIE-MS
fingerprints with a Mastermix fingerprint population. The color coding of highlighted signals is presented in Figure 3A.
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high correspondence in relation to importance score (Figure
5B). Figure 5C shows in detail the rank order of explanatory
signals selected in a RF analysis model comparing all potato
cultivars. Representative (color coded as inFigure 3A) com-
binations of these highlighted signals populate the top 10 rank
positions in pairwise comparisons of individual cultivars with
the Mastermix population (Figure 5D). Interestingly, samples
representing two independently propagated clones of the cultivar
Désirée (De1 and De2) exhibited high correspondence.

Both representation and subsequent comparison of global
chemical composition in plant breeding germplasm and food
raw materials are difficult tasks. Additionally, important quality
assessments by sensory panels rely heavily on subjective data
rather than quantitative measures. Against this background there
is an urgent need to develop a data structure and a data analysis
strategy that will allow robust, high-throughput comparative
assessment of metabolite content. In pairwise comparisons
between cultivars, we show that highly interpretable models
generated by the RF analysis of FIE-MS fingerprints can both
accurately classify potato tubers and also explicitly identify
significant compositional differences. From a utility perspective,
the metabolites we predicted to be responsible for compositional
differences between potato cultivars by both FIE-MS and GC-
MS were indeed associated with important quality traits.
Interestingly, several unknown signals were also highly sig-
nificant, providing scope for the discovery of novel chemical
attributes potentially relating to quality characteristics of
individual cultivars. In the future we expect that FIE-MS
fingerprinting can be used effectively to generate a meaningful
and comprehensive representation of compositional differences
within/between complex biological samples. The high-through-
put nature and the requirement of only small sample volumes
easily allow for the generation of sufficient replicate measure-
ments (33) to ensure a rigorous generalizability assessment (12-
16). Unlike many other powerful data mining approaches that
strive to produce classifiers comprising largely nonredundant
features (12-14,23), the approach we describe using RF allows
all variables an equal chance of being both explicitly identified
and highly ranked. By comparison of FIE-MS data representing
individual genotypes to a common Mastermix fingerprint
population, chemical “bar codes” based on importance score
ranking of explanatory variables (e.g., top 25-30 m/z in
adequate models) can be generated and might form part of a
future database strategy regarding the chemical composition of
foodstuffs. For example, RF ranking could be used to assess
compositional similarity between batches of food raw materials
or form part of a phenotyping strategy to evaluate large genotype
populations encountered in either plant breeding or functional
genomics experiments. From the perspective of directed plant
breeding, a similar approach could be envisaged to link
metabolome fingerprints to complex quality traits and to identify
genetic sources of significant compositional novelty (5, 8, 9,
18, 33, 34).

ABBREVIATIONS USED

DT, decision trees; FIE-MS, flow injection electrospray
ionization mass spectrometry; NMR, nuclear magnetic reso-
nance;m/z, mass to charge ratio; RF, random forest.
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